Difference between revisions of "Kernel interface"
(→Misc: cat) |
(formating) |
||
Line 1: | Line 1: | ||
− | + | {{hint|For apps use higher level libraries/interfaces like SDL, Qt, X or similar for your own good (portability). It may be impossible to retain this layout on some major hardware revision, let's say Pandora 3000, and your program will break. Also this requires some level of Linux programming knowledge.}} | |
− | In case you need to write low level code (you can't/don't want to use high level libs like SDL), you can use kernel interface. This is the recommended way to access hardware (as opposed to GP2X style of accessing chip registers by mmap'ing /dev/mem), because in case hardware changes are needed in future, they could be handled by kernel and all programs would still work. It also should allow several programs to work at the same time and should be more stable. | + | In case you need to write low level code (you can't/don't want to use high level libs like [[SDL]]), you can use [[kernel]] interface. This is the recommended way to access [[hardware]] (as opposed to [[GP2X]] style of accessing chip registers by mmap'ing /dev/mem), because in case hardware changes are needed in future, they could be handled by kernel and all programs would still work. It also should allow several programs to work at the same time and should be more stable. |
==Input== | ==Input== | ||
− | Buttons, keypad, touchscreen and nubs are all exposed through Linux event interface (EVDEV). All devices are represented by /dev/input/eventX files, which can be opened, read and queried (using ioctl calls). The reads can be synchronous (the read will only return when user does something, like presses the button), or asynchronous (the system will report what changed since the last time you asked). | + | [[Buttons]], [[keypad]], [[touchscreen]] and [[nubs]] are all exposed through Linux event interface (EVDEV). All devices are represented by '''/dev/input/eventX''' files, which can be opened, read and queried (using ioctl calls). The reads can be synchronous (the read will only return when user does something, like presses the button), or asynchronous (the system will report what changed since the last time you asked). |
− | + | {{warning | |
+ | |Don't hardcode device filenames in your program! | ||
+ | }} | ||
+ | |||
+ | For example, currently /dev/input/event2 represents game buttons, but in future it may become touchscreen. Scan input device names instead, example: | ||
<source lang="c"> | <source lang="c"> | ||
for (i = 0; 1; i++) | for (i = 0; 1; i++) | ||
Line 21: | Line 25: | ||
List of device names and events they send: | List of device names and events they send: | ||
− | {| | + | {|class="wikitable" |
|- | |- | ||
!name | !name | ||
Line 33: | Line 37: | ||
|EV_KEY | |EV_KEY | ||
|KEY_0...KEY_Z, KEY_BACKSPACE, KEY_LEFTSHIFT, KEY_SPACE, KEY_ENTER, KEY_COMMA, KEY_DOT, KEY_FN | |KEY_0...KEY_Z, KEY_BACKSPACE, KEY_LEFTSHIFT, KEY_SPACE, KEY_ENTER, KEY_COMMA, KEY_DOT, KEY_FN | ||
− | |0 - released | + | |0 - released<br> 1 - pressed<br> 2 - autorepeat event |
|- | |- | ||
|gpio-keys | |gpio-keys | ||
Line 39: | Line 43: | ||
|EV_KEY | |EV_KEY | ||
|KEY_UP, KEY_DOWN, KEY_LEFT, KEY_RIGHT, KEY_MENU (Pandora button), KEY_LEFTALT (Start), KEY_LEFTCTRL (Select), KEY_END (Y/North), KEY_HOME (A/East), KEY_PAGEDOWN (X/South), KEY_END (B/West), KEY_RIGHTSHIFT (Shoulder L), KEY_RIGHTCTRL (Shoulder R), KEY_KPPLUS (Shoulder L2), KEY_KPMINUS (Shoulder R2), KEY_COFFEE (Hold) | |KEY_UP, KEY_DOWN, KEY_LEFT, KEY_RIGHT, KEY_MENU (Pandora button), KEY_LEFTALT (Start), KEY_LEFTCTRL (Select), KEY_END (Y/North), KEY_HOME (A/East), KEY_PAGEDOWN (X/South), KEY_END (B/West), KEY_RIGHTSHIFT (Shoulder L), KEY_RIGHTCTRL (Shoulder R), KEY_KPPLUS (Shoulder L2), KEY_KPMINUS (Shoulder R2), KEY_COFFEE (Hold) | ||
− | |0 - released | + | |0 - released<br> 1 - pressed |
|- | |- | ||
|gpio-keys | |gpio-keys | ||
Line 45: | Line 49: | ||
|EV_SW | |EV_SW | ||
|SW_LID | |SW_LID | ||
− | |0 - closing | + | |0 - closing<br> 1 - opening |
|- | |- | ||
|touchscreen | |touchscreen | ||
Line 57: | Line 61: | ||
|EV_ABS | |EV_ABS | ||
|ABS_X, ABS_Y | |ABS_X, ABS_Y | ||
− | | -256 (Left/Up) | + | | -256 (Left/Up)<br>0<br>+256 (Right/Down) |
|- | |- | ||
|nub1 | |nub1 | ||
Line 63: | Line 67: | ||
|EV_ABS | |EV_ABS | ||
|ABS_X, ABS_Y | |ABS_X, ABS_Y | ||
− | | -256 (Left/Up) | + | | -256 (Left/Up))<br>0<br>+256 (Right/Down) |
|} | |} | ||
Line 74: | Line 78: | ||
==Sound== | ==Sound== | ||
− | Pandora uses ALSA, but it has OSS emulation enabled too, so GP2X code should work. | + | Pandora uses [[ALSA]], but it has [[OSS]] emulation enabled too, so [[GP2X]] code should work. |
==Video== | ==Video== | ||
===Architecture=== | ===Architecture=== | ||
− | Framebuffer device (/dev/fbX) is supported. There are 3 framebuffers available (/dev/fb0, /dev/fb1 and /dev/fb2), which represent 3 graphics/video layers on OMAP3 by default (but can be reconfigured). Only /dev/fb0 is enabled by default. | + | Framebuffer device (/dev/fbX) is supported. There are 3 framebuffers available ('''/dev/fb0''', /dev/fb1 and /dev/fb2), which represent 3 graphics/video layers on [[OMAP3]] by default (but can be reconfigured). Only /dev/fb0 is enabled by default. |
− | OMAP3 display subsystem is controlled by a driver known as DSS2, which has various controls available on /sys/devices/platform/omapdss/ (but they are not meant to be changed by programs, so they are root writable only). The driver exposes 3 layers (called overlays) and 2 displays. Overlays 1 and 2 can perform hardware scaling on the fly using 5-tap poly-phase filter, overlay0 can not. Displays 0 and 1 represent LCD and TV respectively. By default the 3 framebuffers (/dev/fbX) are redirected to 3 overlays, which all output to the LCD. This configuration is not meant to be changed by programs, only firmware should manage these. | + | [[OMAP3]] display subsystem is controlled by a driver known as [[DSS2]], which has various controls available on /sys/devices/platform/omapdss/ (but they are not meant to be changed by programs, so they are root writable only). The driver exposes 3 layers (called overlays) and 2 displays. Overlays 1 and 2 can perform hardware scaling on the fly using 5-tap poly-phase filter, overlay0 can not. Displays 0 and 1 represent LCD and TV respectively. By default the 3 framebuffers (/dev/fbX) are redirected to 3 overlays, which all output to the LCD. This configuration is not meant to be changed by programs, only firmware should manage these. |
===Basic usage=== | ===Basic usage=== | ||
Line 177: | Line 181: | ||
For 3-tap table, first and last columns should contain zeros. | For 3-tap table, first and last columns should contain zeros. | ||
− | ==LEDs and backlight== | + | ==LEDs and Display backlight== |
− | The LEDs can be controlled via /sys/class/leds/, and then a file [http://www.gp32x.com/board/index.php?s=&showtopic=45309&view=findpost&p=673593]: | + | The LEDs can be controlled via '''/sys/class/leds/''', and then a file [http://www.gp32x.com/board/index.php?s=&showtopic=45309&view=findpost&p=673593]: |
* pandora::sd1 | * pandora::sd1 | ||
* pandora::sd2 | * pandora::sd2 | ||
Line 186: | Line 190: | ||
* pandora::wifi | * pandora::wifi | ||
* pandora::keypad_bl | * pandora::keypad_bl | ||
− | Backlight can be controlled via /sys/class/backlight/. | + | Backlight can be controlled via '''/sys/class/backlight/'''. |
==Misc== | ==Misc== | ||
Some things can be controlled through files in /proc/pandora/: | Some things can be controlled through files in /proc/pandora/: | ||
− | * /proc/pandora/cpu_mhz_max - if [http://www.kernel.org/pub/linux/utils/kernel/cpufreq/cpufreq.html cpufreq] is enabled, sets maximum allowed cpu clock, if not, just sets CPU clock to value supplied (echo 600 > /proc/pandora/cpu_mhz_max). Might also just use cpufreq parameters themselves. | + | * '''/proc/pandora/cpu_mhz_max''' - if [http://www.kernel.org/pub/linux/utils/kernel/cpufreq/cpufreq.html cpufreq] is enabled, sets maximum allowed cpu clock, if not, just sets CPU clock to value supplied (echo 600 > /proc/pandora/cpu_mhz_max). Might also just use cpufreq parameters themselves. |
more to come.. | more to come.. | ||
[[Category:Development]] | [[Category:Development]] | ||
[[Category:Kernel]] | [[Category:Kernel]] | ||
+ | [[Category:Hardware]] |
Revision as of 07:29, 22 April 2011
For apps use higher level libraries/interfaces like SDL, Qt, X or similar for your own good (portability). It may be impossible to retain this layout on some major hardware revision, let's say Pandora 3000, and your program will break. Also this requires some level of Linux programming knowledge. |
In case you need to write low level code (you can't/don't want to use high level libs like SDL), you can use kernel interface. This is the recommended way to access hardware (as opposed to GP2X style of accessing chip registers by mmap'ing /dev/mem), because in case hardware changes are needed in future, they could be handled by kernel and all programs would still work. It also should allow several programs to work at the same time and should be more stable.
Input
Buttons, keypad, touchscreen and nubs are all exposed through Linux event interface (EVDEV). All devices are represented by /dev/input/eventX files, which can be opened, read and queried (using ioctl calls). The reads can be synchronous (the read will only return when user does something, like presses the button), or asynchronous (the system will report what changed since the last time you asked).
Don't hardcode device filenames in your program! |
For example, currently /dev/input/event2 represents game buttons, but in future it may become touchscreen. Scan input device names instead, example:
for (i = 0; 1; i++)
{
sprintf(name, "/dev/input/event%i", i);
fd = open(name, O_RDONLY);
if (fd < 0) break; /* no more devices */
ioctl(fd, EVIOCGNAME(sizeof(name)), name);
if (strcmp(name, "gpio-keys") == 0)
return fd; /* found the buttons! */
close(fd); /* we don't need this device */
}
List of device names and events they send:
name | description | event.type | event.code | event.value |
---|---|---|---|---|
keypad | keypad | EV_KEY | KEY_0...KEY_Z, KEY_BACKSPACE, KEY_LEFTSHIFT, KEY_SPACE, KEY_ENTER, KEY_COMMA, KEY_DOT, KEY_FN | 0 - released 1 - pressed 2 - autorepeat event |
gpio-keys | game buttons | EV_KEY | KEY_UP, KEY_DOWN, KEY_LEFT, KEY_RIGHT, KEY_MENU (Pandora button), KEY_LEFTALT (Start), KEY_LEFTCTRL (Select), KEY_END (Y/North), KEY_HOME (A/East), KEY_PAGEDOWN (X/South), KEY_END (B/West), KEY_RIGHTSHIFT (Shoulder L), KEY_RIGHTCTRL (Shoulder R), KEY_KPPLUS (Shoulder L2), KEY_KPMINUS (Shoulder R2), KEY_COFFEE (Hold) | 0 - released 1 - pressed |
gpio-keys | lid state | EV_SW | SW_LID | 0 - closing 1 - opening |
touchscreen | touchscreen | EV_ABS | ABS_X, ABS_Y, ABS_PRESSURE | varies, use calibration data |
nub0 | left nub | EV_ABS | ABS_X, ABS_Y | -256 (Left/Up) 0 +256 (Right/Down) |
nub1 | right nub | EV_ABS | ABS_X, ABS_Y | -256 (Left/Up)) 0 +256 (Right/Down) |
Sample code:
evtest.c
op_test_inputs.c
Touchscreen
Event interface returns uncalibrated values directly from driver, so you need to use tslib or manage calibration yourself (using data from /etc/pointercal).
Sound
Pandora uses ALSA, but it has OSS emulation enabled too, so GP2X code should work.
Video
Architecture
Framebuffer device (/dev/fbX) is supported. There are 3 framebuffers available (/dev/fb0, /dev/fb1 and /dev/fb2), which represent 3 graphics/video layers on OMAP3 by default (but can be reconfigured). Only /dev/fb0 is enabled by default.
OMAP3 display subsystem is controlled by a driver known as DSS2, which has various controls available on /sys/devices/platform/omapdss/ (but they are not meant to be changed by programs, so they are root writable only). The driver exposes 3 layers (called overlays) and 2 displays. Overlays 1 and 2 can perform hardware scaling on the fly using 5-tap poly-phase filter, overlay0 can not. Displays 0 and 1 represent LCD and TV respectively. By default the 3 framebuffers (/dev/fbX) are redirected to 3 overlays, which all output to the LCD. This configuration is not meant to be changed by programs, only firmware should manage these.
Basic usage
framebuffer interface
Framebuffers can be accessed Linux fbdev interface:
fbdev = open("/dev/fb0", O_RDONLY);
buffer = mmap(0, 800*480*2, PROT_WRITE, MAP_SHARED, fbdev, 0);
(this is basic example, no error checks)
the returned pointer can be used to draw on the screen.
Be sure to #include <linux/fb.h> to get access to the FB device ioctl interface, and <sys/ioctl.h> for access to ioctl itself.
double buffering
This can be achieved using FBIOPAN_DISPLAY ioctl system call. For this you need to mmap framebuffer of double size
buffer1 = mmap(0, 800*480*2 * 2, PROT_WRITE, MAP_SHARED, fbdev, 0);
buffer2 = (char *)mem + 800*480*2;
Then to display buffer2 you would call:
struct fb_var_screeninfo fbvar;
ioctl(fbdev, FBIOGET_VSCREENINFO, &fbvar);
fbvar.yoffset = 480;
ioctl(fbdev, FBIOPAN_DISPLAY, &fbvar);
going back to buffer1 would be repeating above with fbvar.yoffset = 0. Tripple or quad buffering can be implemented using the same technique.
vertical sync
Linux has standard FBIO_WAITFORVSYNC for this:
int arg = 0;
ioctl(fbdev, FBIO_WAITFORVSYNC, &arg);
be sure to pass argument value 0 or it will not work.
Currently FBIO_WAITFORVSYNC is not defined in <linux/fb.h>, although this is in the process of modification. For now, define in the following manner:
#ifndef FBIO_WAITFORVSYNC
#define FBIO_WAITFORVSYNC _IOW('F', 0x20, __u32)
#endif
hardware scaling
Overlay1 (/dev/fb1) can be used to achieve hardware scaling. Technically overlay2 (fb2) can be used for this too, but it is planned to be used by the system for TV-out functionality, so don't use it. The overlay is configured using series of standard and OMAP specific ioctl calls, but the system ships with some tools to achieve this from scripts too. This way the framebuffer can be set up for some arbitrary size (say 320x240) and can output to LCD as 800x480 with hardware scaling. Here is an example script:
ofbset -fb /dev/fb1 -pos 0 0 -size 800 480 -mem 307200 -en 1
fbset -fb /dev/fb1 -g 320 240 320 480 16
./your_app_here
ofbset -fb /dev/fb1 -pos 0 0 -size 0 0 -mem 0 -en 0
What it does:
- allocates OMAP DSS layer, asks video output to be 800x480 at position 0,0 (could set it to 640x480 at 80,0 instead to get centered 2x scaling of 320x240). 307200 bytes of video memory are allocated for 2 320x240 16bpp screens (for doublebuffering).
- sets video mode to 320x240@16bpp, virtual resolution 320x480 for doublebuffering.
- runs your app
- cleans the video layer on exit
Now the program can act as if it works with 320x240 16bpp screen.
LCD refresh rate
The OS has a dedicated script which can change the LCD refresh rate. It must be ran with sudo:
sudo -n /usr/pandora/scripts/op_lcdrate.sh 50
From code, system() function can be used for this.
Note: this doesn't mean your program has to run as root to use this (it never should!), just run the script as shown above.
Hardware scaling filter control
The hardware scaler in pandora uses poly-phase 5-tap 8-phase filter. It is described in 15.4.2.3.4 and 15.6.1.3 sections of TRM. There are 40 coefficients programmable for both horizontal and vertical resampling (vertical resampling might also use 3 taps/24 coefficients, it depends on available pixel clock).
using predefined filters
Just run 'sudo /usr/pandora/scripts/op_videofir.sh <name>', where name currently can be:
- default - the default filter from OMAP manual
- none - nearest neighbor
using custom filters
run 'sudo /usr/pandora/scripts/op_videofir.sh <basename>', where basename* files contains coefficient table. The script will look for <basename>_h, <basename>_v3 and <basename>_v5 files for 5-tap horizontal, 3-tap vertical and 5-tap vertical configurations respectively. Pass absolute or relative path for basename with './', like './something'. The coefficients should be in a form of table like described in TRM, for example:
----
0 0 128 0 0
-1 13 124 -8 0
-2 30 112 -11 -1
-5 51 95 -11 -2
0 -9 73 73 -9
-2 -11 95 51 -5
-1 -11 112 30 -2
0 -8 124 13 -1
For 3-tap table, first and last columns should contain zeros.
LEDs and Display backlight
The LEDs can be controlled via /sys/class/leds/, and then a file [1]:
- pandora::sd1
- pandora::sd2
- pandora::charger
- pandora::power
- pandora::bluetooth
- pandora::wifi
- pandora::keypad_bl
Backlight can be controlled via /sys/class/backlight/.
Misc
Some things can be controlled through files in /proc/pandora/:
- /proc/pandora/cpu_mhz_max - if cpufreq is enabled, sets maximum allowed cpu clock, if not, just sets CPU clock to value supplied (echo 600 > /proc/pandora/cpu_mhz_max). Might also just use cpufreq parameters themselves.
more to come..